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Theory of machine
MDP 234

* Lecture aims:
* Understand the Acceleration diagram.

* Identify the Coriolis Component of Acceleration




Acceleration of a Point

* The acceleration of a point is the relationship between the change of
its velocity vector and time .




Acceleration of a Point

* The acceleration of a point has a normal component that points towards the
center of the trajectory and a tangential component whose direction is
tangential to the trajectory




Acceleration of a Link

r
TR - Vaa

* Consider two points .4 and B on a rigid

link as shown in Fig. 8.1 (a). Let the v _E
point B moves with respect to .4, with H h | ;| i
an angular velocity of w rad/s and let Jol | P
rad/s2 be the angular acceleration of the VAN 4

A4 / Ba X

{a) Link. (b) Acceleration diagram.




Acceleration of a Link

. 5 S [
* Since the point B moves with respect to .4 @saw e

with an angular velocity of w rad/s, <8
therefore centripetal or radial component [aed | 3%

of the acceleration of B with respectto 4, /o<~ /

perpendicular to the velocity zg,, In other ~ (ad  / e x
words, it acts parallel to the link AB. (@) Link. (5) Acceleration diagram.

* 'This radial component of acceleration acts [ Fa,, / T~/

ahs = & x Length of link 4B = & x AB = vij, / AB




Acceleration of a Link

* We know that tangential component of the
acceleration of B with respect to .4,

* This tangential component of acceleration
acts parallel to the velocity #,. In other
words, it acts perpendicular to the link A / /| < /
B ll...- ..:’.aFBA II:___- “_ :,

ag, = o X Length of the link 4B = o x 4B

a .--......--....---.. .-

A e / dBa  x

{a) Link. (b) Acceleration diagram.
* a = zero if the crank rotate with constant

speed




Acceleration diagram

Translated bodies

e - the motion 1s absolute, then select any fixed point such as o be as

a reference point (1.e point of zero acceleration).

Draw the path of translation.
If ag 1s known, select a scale factor to draw the acceleration

diagram (denoted by SFa)

draw value in mm ob
SFa= = —

actual value of acceleration in (m/s?) ap




Acceleration diagram

Translated bodies

In which ob=(ag)(SFa).
Then all points on the piston have the same acceleration value.

Note: the base (ref.) point o of v, =0, a,=0.
o

Path of translation of B
R

Acceleration dig.




Acceleration diagram

Bodies rotate about fixed point  « = Given

Also we have two method:-

1- If ais given:-

_ 2 . :
ar,—(0A) w /1101‘1’1131 component of acceleration of

A relative to rotation centre.

ar—(0A) o \ normal component of acceleration of

A relative to rotation centre.

o
acceleration diagram




Acceleration diagram

Bodies rotate about fixed point  « = Given

Finally connect oa to represent the absolute wvalue of acceleration

oa

of point A. =a, = ap, = e

To find the acceleration of any point located on the link,

od oD

such as point D. specity d on oa such that — = —

=>c.~d—( )oa;




Acceleration diagram

Bodies rotate about fixed point

e Seclect a reference point of zero acceleration (point o)

drawn value of aan oraat

Select SFa= . depend on which 1s greater

actual value ofap, oraas
dan O dag.
Start from o to draw oa// OA directed into the rotation centre, by

value of oa = a,,. SFa.

From point a draw a a L OA 1n direction of a by value a a=ax:.SFa.




Acceleration diagram

Bodies rotate about fixed point  «=Unknown

e Start from O, draw two lines.

2 First line oa = a,,, -SFa // OA directed in to point O.

-»>

o'

2 Second line coa = a, - SFa in direction of a, (given).

Then connect aa to represent the drawn tangential component of

acceleration of A. a
S aAt

e
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acceleration diagram




Acceleration diagram

Bodies under general plane motion

To draw the acceleration diagram it’s required one of following:-

W OT VBC-

Absolute acceleration of any point (value and direction).

Absolute acceleration of other point (value or direction).

W OT VBC-

Absolute acceleration of any point (value and direction).

Angular acceleration of the link.




Acceleration diagram

Bodies under general plane motion

Steps:

: VE

If a. 1s known (value and direction), Vg 1s known (direction).
Select SFa = oc = SFa.ac ,ch = SFa.agc,.
Start from point of zero acceleration such as o.

Draw oc in direction of a..




Acceleration diagram

Bodies under general plane motion

From c draw cb // link directed into point ¢ (on the link).

From o draw a line in direction of ag, and from b draw a line
1 link (to be agct), they are intersected at b.

If ais known (value and direction).

Find ag~s = a. BC then bb = SFa. ag;.




Acceleration diagram

Bodies under general plane motion

Start from b to draw bb 1link.

Connect ob

Find a, . ap.

BA

Specity be such that E = —-

oa ' Acceleration diagram

Measure oa—a, = :
SFa

Specify cd such that ':—E

Measure od — ap




Acceleration diagram

Bodies under general plane motion

e Measure bb=agc; =
ABCt O
BC

Note:- a 1s the same tfor all points of the link.

To find a (value and direction) in unknown:-

—

bb
SFa




Computing Acceleration in a Four-Bar Linkage

* TFour-bar linkage with known angular velocity and acceleration of the input

link .

ap — ay +apa — (ap +ay) — (a +al) + (ap, +aj,)




Computing Acceleration in a Four-Bar Linkage

* Acceleration polygon of the four-bar linkage in the Fig.




Accelerations 1n a Slider-crank Linkage

* Slider-crank linkage with constant angular velocity in link 2

0. AN

agp — a, +apa — (a, + 3,{1) + (ag, + ﬂfﬁm)




Accelerations 1n a Slider-crank Linkage

* Acceleration polygon of the slider-crank . linkage in the Fig
o A




Accelerations 1n a Slider-crank Linkage

* The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm
and the connecting rod is 600 mm long. Determine :

1. Iinear velocity and acceleration of the midpoint of the connecting rod, and

2. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from
Inner dead center position.

(@) Space diagram.

(b) Velocity diagram. (c) Acceleration diagram.




Coriolis Theorem

Frame OXY is fixed and frame Oxy rotates with angular
velocity Q.

Rate of change vector 7p for the particle P depends on
the choice of frame.

* The absolute velocity of the particle P 1s
5 = Joxr = %7 +(F)ony




Coriolis Theorem

* Consider a link OA and a slider B as shown in Fig. 8.26 (a).
The slider B moves along the link OA. The point C'1s the
coincident point on the link OA.

w = Angular velocity of the link OA at time # seconds.

v = Velocity of the slider B along the link OA at time #
seconds.

w.r = Velocity of the slider B with respect to O (perpendicular
to the link OA)

at time 7/ seconds, and (w + dw), (v + 62) and (w + dw) (r + &7)

‘h
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Coriolis Theorem

A

* Fig. 8.26 () shows the velocity diagram when | A
their velocities » and (v + d») are considered. |

. . . -t':l:-\‘ll
* In this diagram, the vector b, represents the change in o k)’{ <—|r*
velocity in time &/ sec ; ) Bﬁ/ LY 1:1

L]
the vector bx represents the component of change of f'_
66

velocity bb, along OA (z.e. along radial direction) and (o+50) X1

vector xb, represents the component of change of 0

: : e : N (ar)
velocity bb, in a direction perpendicular to OA (Z.e. 1n :
tangential direction).

bx=ox—-ob=(v+&)cos88—vT 86 is very small  py = (v + 8y =v) T=8vT (Acting radially outwards)




Coriolis Theorem

xb, = (v + &v) sin 80 sin 50 = 50

xb, = (v + dv) 80 = v.50 + Sv.58 ;fiﬁ{‘
Neglecting dv.60 being very small u;\ ‘—’ﬁ

— LY
xb =v.00 (Perpendicular to 04 and towards left) Bﬁ/' E‘

[

.. e
¥ 00

(b)) ]

0

(er)




Coriolis Theorem

* TFig. 8.26 (¢) shows the velocity diagram when the
velocities w.7and (o + dw) (r+ 87) are considered.
In this diagram, vector bb1 represents the change SO\ By ) ]
in velocity ; vector yb1 represents the component e ] ¥ o
of change of velocity b1 along OA (i.e. along : N [PB |  (ese) (ren
radial direction) and vector by represents the ‘ -
component of change of velocity 441 in a
direction perpendicular to OA (ze. 1n a tangential _m
direction) (w+dw) (]

vh = (o + 8w) (r + &) sin 6 L . 0
= (o + wdr + S + dw.dr) sin 50 '




vh = @r.ol + wor.od + dur.o0 + owmor.o

Coriolis Theorem

= mr.80 | . acting radially inwards
by = oy—ob=(w0+ éw) (r+ &) cos 66 — w.r

(w.r+ w.dr+ dw.r + 6w.or) cos 60 — w.r
Since 80 is small, therefore substituting cos 80 = 1, we have

by = @.r+ @.6r+ dm.r + 8w.6r — w.r= @.6r + r.6m

Therefore, total component of change of velocity along radial direction

= bx = yvb, = (0v = @.r.00) T

~ Radial component of the acceleration of the slider B with respect
to O on the link OA, acting radially outwards from O to A ,

. ov — @rdd  dv do dv 5
ago =Lt ——=—-

= Orx—"=—r - r T e dB/dt = ®)

(o+dm)

(er)

0




Coriolis Theorem

The total component of change of velocity along tangential direction,
=xb + by =v.00 + (wOr + r.0m)

{Perpendicular to 04 and towards left) :ﬁ(
E
.;3"'.

~ Tangential component of acceleration of the slider B with respect @ w7 {31
to O on the link OA, acting perpendicular to O and towards left, i/

v.ob + (wor + r.E»{t‘.-} dEi o dr .y dw
of .-:J'f dt dt [ drldi = v, and do/ dif = of)

—

= v+ v+ ro=(2v.o+ ro)

r —




Coriolis Theorem

. % . . F"
* Now radial component of acceleration of the % LA

coincident point C with respect to O, acting in

a direction from C to O Xt }@{ <—|r<
2 t:-'*:' g

r 2
ﬂc-ﬂ:[ﬂ.l"r 5,//‘1:
1

L L
* Tangential component of acceleration of the f’ 50
coincident point C with respect to O, acting in a (4dw) ]
e : 0
direction perpendicular to CO and towards left, (a)

—
ato =oer T




Coriolis Theorem

X 5 3 Lo R A
* Radial component of the slider B with respect to % LA

the coincident point C on the link OA,

: ; 0
acting radially outwards ? ﬁk& ,/{ <—|r<

- dh
F F 7
dh. = aly —ale = V=) =21 Y
B( BO
)

* Tangential component of the slider B with fn !
respect to the coincident point C on the link OA (w+d0) ]

acting in a direction perpendicular to OA and o

towards left,

e

l'-‘]'LrElil:'_' = ﬂj{ﬂn - r.‘i':_;_-g = {:"—- v + [:I_'J'} - o.r=2my




Coriolis Theorem

* This tangential component of acceleration of the o i
; : > : % v
slider B with respect to the coincident point C on the
link 1s known as Coriolis component of

)
acceleration and is always perpendicular to the A" A’( ‘—|r‘

link. "“ E// l’ .|:1
" Coriolis component of the acceleration of B with | _m, |
tespect of G, ¥ a0

(co+dm) ]

O

apc = dpc = 20wy
* Where (i)

w = Angular velocity of the link OA, and
v = Velocity of slider B with respect to coincident point C.




Coriolis Theorem

* The anticlockwise direction for w and the

radially outward direction for » are taken as
positive.

* The direction of Coriolis component of

acceleration will not be changed in sign if both
w and » are reversed in direction.




Coriolis Theorem
Example

* A mechanism of a crank and slotted lever quick return motion is shown 5
in Fig. 8.28. If the crank rotates counter clockwise at 120 r.p.m., i &
determine for the configuration shown, the velocity and acceleration of the \ L

g 5 | 300 mm
ram D. Also determine the angular acceleration of the slotted lever. 5 45°
Crank, AB = 150 mm ; Slotted arm, OC = 700 mm and link , A—

CD = 200 mm.
Solution. Given : N = 120 t.p.m ot wsn= 2 7 X 120/60 = 12.57
radish BN S Ay =0 N5 e OO0 mhoy 0SS S
200 mm = 0.2 m We know that velocity of B with respect to A4 ,
Vgs = gy X AB
=1257x0.15=1.9 m/s
...{Perpendicular to 4 B)




Coriolis Theorem

Example
vector ab = BA =1.9 m/s

Since the point C lies on OB’ produced, therefore, divide O » ok b

. . . . . I ar | I |I.____.-"'|I-
vector ob' at ¢in the same ratio as C divides OB’ in the space BS" oneiden R
diagram. In other words, 06’/ oc = OB’/ OC' *° T

Now from point ¢, draw vector ¢ perpendicular to CD to

represent the velocity of D with respect to C ze. vDC , and

from point o draw vector od parallel to the path of motion of

D (which is along the horizontal) to represent the velocity of \

D i.e. vD. The vectors ¢d and od intersect at 4. 0

By measurement, we find that velocity of the ram D, (a) Space diagram.

D= vectoriod = 2 [oemi/s

Yaa

(b) Velocity diagram.




Coriolis Theorem

Example

* From velocity diagram, we also find that

Velocity of B with respect to B,
BB’ = vector b'h = 1.05 m/s

Velocity of D with respect to C,
yDC = vector ¢d = 0.45 m/s

Velocity of B’ with respect to O
yB'O = vector ob' = 1.55 m/s

Velocity of C with respect to O,
»CO = vector oc = 2.15 m/s

~ Angular velocity of the link OC or OB/,

{y B Oc 0.7

D

CF-E "F
1 SRRy

Yaa

\ b
i
i t

¢
o

(a) Space diagram.

= 3.07 rad/s (Anticlockwise)

d

B Slider ' Coincident 'BC :
i point B’ -
g -
a A ~ ,

(b) Velocity diagram.




Coriolis Theorem
Example

ro= i, X AB =(12.57)?%0.15 = 23.7 m/s 2
dpy = gy X ( ) s G__ﬁf“fff

afp’ = 20w = 260g vap = 2 X 3.07 x 1.05 = 6.45 m/s* -( @=0p and v=vgp')

Yea

- i
- ([} 45}" B Slider ‘ Cmnmtdznrt aw © -
Ybe - ] - - poin
ape === = 1.01 m/s’ o
N n- {, R

o = l'E:m _ [1-55]3
B0 B0 052

= 4.62 m/s” (By measurement B'0 = (.52 m) |

These two components are mutually perpendicular. Therefore
from point o', draw vector o'y parallel to B'O to represent aso' = y
4.62 m/s:and from point y draw vector yb" perpendicular to o
QTN SRR

' " s (a) Space diagram.
vector o'y to represent asor. The vectors xb" and yb" intersect at
b". Join o'b". The vector o'b" represents the acceleration of B’ with
respect to O, ze. aso.

-
J-w
a

(d) Acceleration diagram




Coriolis Theorem

Example

. D
The two components are mutually perpendicular. Therefore draw ot

vector ¢'z parallel to CD to represent «DC” = 1.01 m/s2 and from

: . S BSlider Coincident .':a.-;g', © -
g draw 24’ perpendicular to vector 3¢’ to represent zDC/, whose point &'

W r b
magnitude 1s yet unknown. fon | ¥
From point ¢/, draw vector ¢'d" in the direction of motion of the |
ram D which is along the hotizontal. The vectors 34" and o'd’

intersect at 4. The vector o'd’ represents the acceleration of ram
D z.e. aD.

]
By measurement, we find that acceleration of the ram D, ©
(a) Space diagram.

A

r r 1
ago = vector vb" = 6.4 m/s”

We know that angular acceleration of the slotted lever,  _ @go _ 6.4
OB" 052

=12.3 rad/s” (Anticlockwise)

-
J-w
a

(d) Acceleration diagram




Sample Problem

sk S : % SOLTUUTIOMN:

H = 50 muan

= The absolute velocity of the point P
may be written as

Vip =Vp +Vpis

Magnitude and direction of velocity
v of pin P are calculated from the
radius and angular velocity of disk /.
I=~2ZR —|
Direction of velocity vpr of point &7 on
S coinciding with P i1s perpendicular to

Disk I of the Geneva mechanisim rotates )
radinus 2~

with constant counterclockwise angular
wvelocity ey, = 10 rad/s. Direction of velocity vip,; of P with

AT the instant when ¢ = 150°. determine respect to 5 is parallel to the slot.

(@) the angular velocity of disk 5. and (&) Solve the vector triangle for the
the velocity of pin P relative to disk S. angular velocity of S and relative
velocity of P




Sample Problem

SOLTTITTON:

The absolute velocity of the point P mayv be written as
Ve = Ve Ve

MMagnituide and direction of absolute velocity of pin ™ are
calculated from radiuvus and angular velocity of disk /.

Vp — Ry — (50 111111){10 1‘adl,.-'r5} = SO01mins

Direction of velocity of P with respect to S is parallel to slot.
From the law of cosines,

L = R 472 2 RIcos30° —0.S5S51.R2 7= 37.11mxun

From the law of cosines,
sin 7 sitn 30° sirn 30°

SITL - - — A2 A
| S - o 0. 7422 s

The interior angle of thie vector triangle is
=90 — 42 4 —30° =17.6°

&




Sample Problem

Direction of velocity of point P” on .S coinciding with
F 1s perpendicular to radius OF From the velocity

riangle. _
vp = vpsin ¥ = (500mm/s)sinl17.6°=151.2mm/s

vp =500 mmys

_151.2mm/s

= F¢E i
= = -
37.1 11uam

. =(—4.08rad/s )k

Vpis = VpCOSs Y = (s00m/s)cos17.6°

Vipr, = (477m/s N—cos 42.4%7 —sin 42.4° 5 )




